
CENG3430 Rapid Prototyping of Digital Systems

Lecture 01:

Introduction to VHDL

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Outline

• Basic Structure of a VHDL Module

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 2

1) Library Declaration

2) Entity Declaration

– External Signal (I/O Pins)

3) Architecture Body

– Internal Signal

– Architectural Design Methods

 Data Flow Design (concurrent statements)

 Structural Design (“port map”)

 Behavioral Design (sequential statements)

– Concurrent vs. Sequential Statements

– Design Constructions

Basic Structure of a VHDL Module

A VHDL file

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 3

3) Architecture Body
Define the internal signals and

operations of the desired function

2) Entity Declaration
Define the signals that can be seen

outside externally (I/O pins)

1) Library Declaration
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

• Schematic Circuit of a 4-bit Comparator

*Recall: Exclusive NOR (XNOR)

– When A=B, Output Y = 0

– Otherwise, Output Y = 1

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 4

A = [a3,a2,a1,a0]

B = [b3,b2,b1,b0]

equals

VHDL for programmable logic, Skahill, Addison Wesley

eqcomp4

A B Y

0 0 1

0 1 0

1 0 0

1 1 1

Truth Table

(equals=1 when A=B)

Example: 4-bit Comparator in VHDL (1/2)

• Code of 4-bit Comparator in VHDL:

eqcomp4.vhd

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 5

Example: 4-bit Comparator in VHDL (2/2)

1 --the code starts here , “a comment”

2 library IEEE;

3 use IEEE.std_logic_1164.all;

4 entity eqcomp4 is

5 port (a, b: in std_logic_vector(3 downto 0);

6 equals: out std_logic);

7 end eqcomp4;

8 architecture arch_eqcomp4 of eqcomp4 is

9 begin

10 equals <= '1' when (a = b) else '0’;

11 -- “comment line”

12 end arch_eqcomp4;

Library

Declaration

Entity

Declaration

Architecture

Body

Outline

• Basic Structure of a VHDL Module

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 6

1) Library Declaration

2) Entity Declaration

– External Signal (I/O Pins)

3) Architecture Body

– Internal Signal

– Architectural Design Methods

 Data Flow Design (concurrent statements)

 Structural Design (“port map”)

 Behavioral Design (sequential statements)

– Concurrent vs. Sequential Statements

– Design Constructions

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 7

Entity Declaration

1 --the code starts here , “a comment”

2 library IEEE;

3 use IEEE.std_logic_1164.all;

4 entity eqcomp4 is

5 port (a, b: in std_logic_vector(3 downto 0);

6 equals: out std_logic);

7 end eqcomp4;

...

Library

Declaration

Entity

Declaration

Architecture

Body

entity enclosed by the identifier eqcomp4 (entered by the user)

port defines the external signals (i.e., I/O pins)

a, b, equals are the identifiers of external signals

in, out are the modes of external signals

std_logic, std_logic_vector are the logic types

of external signals

Identifiers

• Identifiers: Used to name any object in VHDL

• Naming Rules:

1) Made up of only alphabets, numbers, and underscores

2) First character must be a letter

3) Last character CANNOT be an underscore

4) Two connected underscores are NOT allowed

5) VHDL-reserved words are NOT allowed

6) VHDL is NOT case sensitive

• Txclk, Txclk, TXCLK, TxClk are all equivalent

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 8

https://www.ics.uci.edu/~jmoorkan/vhdlref/Synario%20VHDL%20Manual.pdf

VHDL Reserved Words

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 9

Class Exercise 1.1

• Determine whether the following identifiers are legal

or not. If not, please give your reasons.

– tx_clk

– _tx_clk

– Three_State_Enable

– 8B10B

– sel7D

– HIT_1124

– large#number

– link__bar

– select

– rx_clk_

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 10

Student ID:

Name:

Date:

External Signals (I/O Pin)

• An external signal (or I/O pin) is a physical wire that

can carry logic information.

• Many logic types are eligible for external signals, e.g.,

– bit: can be logic ‘1’ or ‘0’ only

– std_logic: can be logic ‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, or ‘-’

• 9-valued standard logic (IEEE standard 1164)

• E.g., equals: out std_logic;

– std_logic_vector: a group of wires (i.e., a signal bus)

• E.g., a, b: in std_logic_vector(3 downto 0);

– Each of a(3), a(2), a(1), a(0) is a std_logic signal.

• VHDL is strongly-typed language.

– Signals of different base types CANNOT to assigned to

each other without the use of type-conversion.

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 12

IEEE 1164: 9-valued Logic Standard

• ‘U’: Uninitialized

• ‘X’: Forcing Unknown

• ‘0’: Forcing 0

• ‘1’: Forcing 1

• ‘Z’: High Impedance (Float)

• ‘W’: Weak Unknown

• ‘L’: Weak 0

• ‘H’: Weak 1

• ‘-’: Don’t care

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 13

U X 0 1 Z W L H –

U U U U U U U U U U

X U X X X X X X X X

0 U X 0 X 0 0 0 0 X

1 U X X 1 1 1 1 1 X

Z U X 0 1 Z W L H X

W U X 0 1 W W W W X

L U X 0 1 L W L W X

H U X 0 1 H W W H X

VHDL Resolution Table

• Rule: When 2 signals meet, the forcing signal dominates.

Resolved Logic Concept

• Resolved Logic (Multi-value Signal): Multiple outputs

can be connected together to drive a signal.

– The resolution function is used to determine how multiple

values from different sources (drivers) for a signal will be

reduced to one value.

• Single-value Signal Assignment:

signal a, c: bit;

c <= a;

• Multi-value Signal Assignment:

signal a, b, c: bit;

c <= a;

c <= b;

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 14

a c

b

?

We need to “resolve” it!

a c

std_logic vs. std_ulogic (1/2)

• std_logic: a type of resolved logic, that means a

signal can be driven by 2 inputs.

• std_ulogic (“u” means unresolved): a type of

unresolved logic, that means a signal CANNOT

be driven by 2 inputs.

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 15

a c

b

?

std_logic vs. std_ulogic (2/2)

• How to use it?

library IEEE;

use IEEE.std_logic_1164.all;

entity

architecture

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 16

Class Exercise 1.2

• How many input and output pins are there in the code?

Answer: __

• What are their names and their types?

Answer: __

• What is the difference between std_logic and std_logic_vector?

Answer: __
CENG3430 Lec01: Introduction to VHDL 2021-22 T2 17

Student ID:

Name:

Date:

eqcomp4.vhd1 library IEEE;

2 use IEEE.std_logic_1164.all;

3 entity eqcomp4 is

4 port (a, b: in std_logic_vector(3 downto 0);

5 equals: out std_logic);

6 end eqcomp4;

7 architecture arch_eqcomp4 of eqcomp4 is

8 begin

9 equals <= '1' when (a = b) else '0’;

10 end arch_eqcomp4;

Modes of I/O Pins

• Modes of I/O pin must be explicitly specified in

port of entity declaration:

Example:

entity eqcomp4 is

port (a, b: in std_logic_vector(3 downto 0);

equals: out std_logic);

end eqcomp4;

• There are 4 available modes of I/O pins:

1) in: Data flows in only

2) out: Data flows out only (cannot be read back by the entity)

3) inout: Data flows bi-directionally (i.e., in or out)

4) buffer: Similar to out but it can be read back by the entity

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 19

Class Exercise 1.3

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 20

• Based on the following schematic, identify the modes

of the IO pins.

VHDL for programmable logic, Skahill, Addison Wesley

A

B

C

D

F

G

E

Student ID:

Name:

Date:

Reviews for Common Logic Gates

Outline

• Basic Structure of a VHDL Module

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 22

1) Library Declaration

2) Entity Declaration

– External Signal (I/O Pins)

3) Architecture Body

– Internal Signal

– Architectural Design Methods

 Data Flow Design (concurrent statements)

 Structural Design (“port map”)

 Behavioral Design (sequential statements)

– Concurrent vs. Sequential Statements

– Design Constructions

Architecture Body

• Architecture Body: Defines the internal of the chip

Example: the architecture body of the entity eqcomp4

architecture arch_eqcomp4 of eqcomp4 is

begin

equals <= '1' when (a = b) else '0';

-- “comment line”

end arch_eqcomp4;

– arch_eqcomp4: the architecture identifier (entered by the user)

– equals, a, b: I/O pins designed by the user in the entity declaration

– begin … end: define the internal operation

– equals <= '1' when (a = b) else '0';

• <= here means “signal assignment” not “less than or equal”.

• when-else is a concurrent design construction.

– --: comment on a line

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 23

Built-in Operators

• Logical Operators: and, or, nand, nor, xor, xnor,
not have their usual meanings.

• Relation Operators (result is Boolean)

CENG3430 Lec01: Introduction to VHDL (1/2) 2021-22 T2 24

• Logical Shift and Rotate

– sll shift left logical, fill blank with 0

– srl shift right logical, fill blank with 0

– rol rotate left logical, circular operation

• E.g., “10010101” rol 3 is “10101100”

– ror rotate right logical, circular operation

= equal

/= not equal

< less than

<= less than or equal

> greater than

>= greater than or equal

https://www.ics.uci.edu/~jmoorkan/vhdlref/Synario VHDL Manual.pdf

https://www.ics.uci.edu/~jmoorkan/vhdlref/Synario%20VHDL%20Manual.pdf

Outline

• Basic Structure of a VHDL Module

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 25

1) Library Declaration

2) Entity Declaration

– External Signal (I/O Pins)

3) Architecture Body

– Internal Signal

– Architectural Design Methods

 Data Flow Design (concurrent statements)

 Structural Design (“port map”)

 Behavioral Design (sequential statements)

– Concurrent vs. Sequential Statements

– Design Constructions

Keys to design complicated architecture body!

Internal Signal

• The entity declares the external signals.

• The architecture body can also declare signals that

can be used internally.

architecture arch_eqcomp4 of eqcomp4 is

-- Internal signals shall be declared here!

begin

...

end arch_eqcomp4;

– Signal: Represent physical wires

• E.g., signal s1: BIT := '1';

– Constant: Hold unchangeable values

• E.g., constant c1: BIT := '1';

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 26

Signal Object

signal SIG_NAME: <type> [:= <value>];

Note: Signals can be declared without initialized values.

• Examples:

– signal SIG_NAME: STD_LOGIC;

• Declared without initialized value

– signal SIG_NAME: STD_LOGIC := '1’;

• Signals can be declared

– In the “port” of the entity declaration (as external signals);

– Or in the architecture body (as internal signals).

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 27

Constant Object

constant CONST_NAME: <type> := <value>;

Note: Constants must be declared with initialized values.

• Examples:

– constant CONST_NAME: STD_LOGIC := 'Z';

– constant CONST_NAME: STD_LOGIC_VECTOR (3

downto 0) := "0-0-";

• '-' means “don’t care”

• Constants can be declared in

– Anywhere allowed for declaration.

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 28

Class Exercise 1.4

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 29

Student ID:

Name:

Date:

1 entity nandgate is

2 port (in1, in2: in STD_LOGIC;

3 out1: out STD_LOGIC);

4 end nandgate;

5 architecture nandgate_arch of nandgate is

6 ___

7 begin

8 connect1 <= in1 and in2;

9 out1<= not connect1;

10 end nandgate_arch;

• Declare an internal signal named “connect1” in Line 6.

• Can you assign an I/O mode to this signal? Why?

__

• Draw the schematic circuit for the code.

Outline

• Basic Structure of a VHDL Module

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 31

1) Library Declaration

2) Entity Declaration

– External Signal (I/O Pins)

3) Architecture Body

– Internal Signal

– Architectural Design Methods

 Data Flow Design (concurrent statements)

 Structural Design (“port map”)

 Behavioral Design (sequential statements)

– Concurrent vs. Sequential Statements

– Design Constructions

• Data flow design method uses concurrent statements

rather than sequential statements.

– Concurrent statements can be interchanged freely.

– There’s no “execution order” for concurrent statements.

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 32

1 library IEEE; %Vivado2014.4 tested ok

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity eqb_comp4 is

4 port (a, b: in std_logic_vector(3 downto 0);

5 equals, bigger: out std_logic);

6 end eqb_comp4;

7 architecture dataflow4 of eqb_comp4 is

8 begin

9 equals <= '1' when (a = b) else '0'; --concurrent

10 bigger <= '1' when (a > b) else '0'; --concurrent

11 end dataflow4;

 Data Flow (Concurrent Statements)

Lines 9 & 10 will be executed whenever

signal a or b (or both) changes.

Class Exercise 1.5

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 33

Student ID:

Name:

Date:

1 library IEEE; --Vivado 14.4

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity abc is

4 port (a,b,c: in std_logic;

5 y: out std_logic);

6 end abc;

7 architecture abc_arch of abc is

8 signal x : std_logic;

9 begin

10 x <= a nor b;

11 y <= x and c;

12 end abc_arch;

• Draw the schematic circuit of this code:

Answer:

• Structural Design: Like a circuit but describe it by text.

• Design Steps:

Step 1: Create entities

Step 2: Create components from entities

Step 3: Use “port map” to relate the components

Component B

 Structural Design (use “port map”)

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 35

Component C

Connected by port map in the architecture body

of the top-level design module

Component A
Top-level

Module

Step 1: Create Entities

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 36

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity and2 is

4 port (a,b: in STD_LOGIC;

5 c: out STD_LOGIC);

6 end and2;

7 architecture and2_arch of and2 is

8 begin

9 c <= a and b;

10 end and2_arch;

11 ---------------------------------

12 library IEEE;

13 use IEEE.STD_LOGIC_1164.ALL;

14 entity or2 is

15 port (a,b: in STD_LOGIC;

16 c: out STD_LOGIC);

17 end or2;

18 architecture or2_arch of or2 is

19 begin

20 c <= a or b;

21 end or2_arch;

a

b
c

AND2

a

b
c

OR2

Step 2: Create Components

component and2 --create components--

port (a,b: in std_logic; c: out std_logic);

end component;

component or2 --create components--

port (a,b: in std_logic; c: out std_logic);

end component;

signal con1_signal: std_logic; --internal signal--

-- (optional) --

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 37

a

b
c

AND2

a

b
c

OR2

Step 3: Connect Components

begin

label1: and2 port map (in1, in2, inter_sig);

label2: or2 port map (inter_sig, in3, out1);

end test_arch;

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 38

in1

in3
out1in2

inter_sig

label1 & label 2 are line labels

Lines can be interchanged for the same circuit design.

Step 2

Step 1

Step 1

Put Together: A Running Example

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 39

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity and2 is

4 port (a,b: in STD_LOGIC;

5 c: out STD_LOGIC);

6 end and2;

7 architecture and2_arch of and2 is

8 begin

9 c <= a and b;

10 end and2_arch;

11 ---------------------------------

12 library IEEE;

13 use IEEE.STD_LOGIC_1164.ALL;

14 entity or2 is

15 port (a,b: in STD_LOGIC;

16 c: out STD_LOGIC);

17 end or2;

18 architecture or2_arch of or2 is

19 begin

20 c <= a or b;

21 end or2_arch;

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 --

4 entity test is

5 port (in1: in STD_LOGIC; in2: in STD_LOGIC;

6 in3: in STD_LOGIC;

7 out1: out STD_LOGIC);

8 end test;

9 architecture test_arch of test is

10 component and2 --create component

11 port (a,b: in std_logic; c: out std_logic);

12 end component ;

13 component or2 --create component

14 port (a,b: in std_logic; c: out std_logic);

15 end component ;

16 signal inter_sig: std_logic;

17 begin

18 label1: and2 port map (in1, in2, inter_sig);

19 label2: or2 port map (inter_sig, in3, out1);

20 end test_arch;

Step 3

Top-level Module

Class Exercise 1.6

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 40

• Draw the schematic diagram for the statements:

i label_u0: and2 port map (a, c, x);

ii label_u1: or2 port map (b, x, y);

• When will Lines i and ii be executed?

• Answer:

– Line i: __

– Line ii: __

Student ID:

Name:

Date:

Another Running Example

entity test_andand2 is

port (in1: in STD_LOGIC;

in2: in STD_LOGIC;

in3: in STD_LOGIC;

out1: out STD_LOGIC

);

end test_andand2;

architecture test_andand2_arch of test_andand2 is

component and2

port (a, b: in std_logic; c: out std_logic);

end component ;

signal inter_sig: std_logic;

begin

label1: and2 port map (in1, in2, inter_sig);

label2: and2 port map (inter_sig, in3, out1);

end test_andand2_arch;

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 42

No need to create the

component for the same

entity for several times

But you can use

the component

multiple times

in1

in3

inter_sig

out1in2

 Structural vs.  Data Flow

 Structural

(“port map”)

 Data Flow

(concurrent statements)

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 43

architecture test_arch of test is

signal x : std_logic;

begin

x <= a nor b;

y <= x and c;

end test_arch;

architecture test_arch of test is

component and2

port (a,b: in std_logic;

c: out std_logic);

end component ;

component nor2

port (a,b: in std_logic;

c: out std_logic);

end component ;

signal x: std_logic;

begin

label1: nor2 port map (a, b, x);

label2: and2 port map (x, c, y);

end test_arch;

a

c
yb

x

 Behavioral Design (use “process”)

• Behavioral design is sequential

– Just like a sequential program

• The keyword is “process”:

– The main character is “process (sensitivity list)”.

– A process is executed when one (or more) of the signals

in the sensitivity list changes.

– Statements inside a process are sequentially executed.

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 44

Behavioral Design Example

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 45

library IEEE; --vivado14.4

use IEEE.STD_LOGIC_1164.ALL;

entity eqcomp4 is

port (a, b: in std_logic_vector(3 downto 0);

equals: out std_logic);

end eqcomp4;

architecture behavioral of eqcomp4 is

begin

process(a, b)

begin

if a = b then

equals <= '1';

else

equals <= '0';

end if;

end process;

end behavioral;

 Behavioral Design: Sequential in a “process”

Sequential Execution:

Statements inside a process are

sequentially executed.

Another Example? See Lab01

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 46

entity AND_Gate is

port (A: in STD_LOGIC;

B: in STD_LOGIC;

C : out STD_LOGIC);

end AND_Gate;

architecture AND_arch of

AND_Gate is

begin

C <= A and B;

end AND_arch;

architecture Behavioral of AND_TEST is

component AND_Gate

port(A, B: in STD_LOGIC;

C: out STD_LOGIC);

end component;

signal ai, bi: STD_LOGIC;

signal ci: STD_LOGIC;

begin

AND_Gate port map (A => ai, B => bi,

C => ci);

process

begin

ai <= '0'; bi <= '0';

wait for 100 ns;

ai <= '1'; bi <= '0';

wait for 100 ns;

ai <= '0'; bi <= '1';

wait for 100 ns;

ai <= '1'; bi <= '1';

wait;

end process;

end Behavioral;

Hardware Simulation

1) It is legal to have a process

WITHOUT a sensitivity list.

2) Such process MUST have some

kinds of time-delay or wait (see

Lec03 for more examples).

Outline

• Basic Structure of a VHDL Module

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 47

1) Library Declaration

2) Entity Declaration

– External Signal (I/O Pins)

3) Architecture Body

– Internal Signal

– Architectural Design Methods

 Data Flow Design (concurrent statements)

 Structural Design (“port map”)

 Behavioral Design (sequential statements)

– Concurrent vs. Sequential Statements

– Design Constructions

Concurrent vs. Sequential Statements

• Concurrent Statement

1) Statements inside the architecture body can be executed
concurrently, except statements enclosed by a process.

2) Every statement will be executed once whenever any

signal in the right-hand-side of statement changes.

• Sequential Statement

1) Statements within a process are executed sequentially,

and the result is obtained when the process is complete.

2) process(sensitivity list): Whenever any signals

in the sensitivity list changes its state, the process

executes once.

3) A process can be treated as one concurrent statement in

the architecture body.

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 48

Concurrent with Sequential

1 library IEEE; --vivado14.4 ok

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity conc_ex is

4 port (in1,in2,in3: in std_logic;

5 out1,out2 : inout std_logic);

6 end conc_ex;

7 architecture for_ex_arch of conc_ex is

8 begin

9 process (in1, in2)

10 begin

11 out1 <= in1 and in2;

12 end process;

13 out2 <= out1 and in3; -- concurrent statement

14 end for_ex_arch;

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 49

The process (9-12) and

line 13 are concurrent

and can be interchanged!

in1

in3

out2
in2

out1

Class Exercise 1.7

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 50

Student ID:

Name:

Date:

• Use structural, data flow, and behavioral designs

to implement the following circuit in VHDL:

in1

in3

out2

in2

out1

in4

out3
S

DF
B

Outline

• Basic Structure of a VHDL Module

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 52

1) Library Declaration

2) Entity Declaration

– External Signal (I/O Pins)

3) Architecture Body

– Internal Signal

– Architectural Design Methods

 Data Flow Design (concurrent statements)

 Structural Design (“port map”)

 Behavioral Design (sequential statements)

– Concurrent vs. Sequential Statements

– Design Constructions

Design Constructions

• Concurrent: Statements that can be stand-alone

1) when-else

2) with-select-when

• Sequential: Statements inside the process

1) if-then-else

2) case-when

3) for-in-to-loop

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 53

Sequential – INSIDE process

Concurrent: OUTSIDE process

Concurrent 1) when-else

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 54

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity when_ex is

4 port (in1, in2 : in std_logic;

5 out1 : out std_logic);

6 end when_ex;

7 architecture when_ex_arch of when_ex is

8 begin

9 out1 <= '1' when in1 = '1' and in2 = '1' else '0';

10 end when_ex_arch;

in1

in2
out1

Condition based

when condition is true then out1 <= ‘1’

otherwise then out1 <= ‘0’

Class Exercise 1.8

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 55

Student ID:

Name:

Date:

• Fill in line 9 using when-else:

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity when_ex is

4 port (in1, in2 : in std_logic;

5 out1 : out std_logic);

6 end when_ex;

7 architecture when_ex_arch of when_ex is

8 begin

9 __

10 end when_ex_arch;

in1

in2
out1

Concurrent 2) with-select-when

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity when_ex is

4 port (in1, in2 : in std_logic;

5 out1 : out std_logic);

6 end when_ex;

7 architecture when_ex_arch of when_ex is

8 begin

9 with in1 select

10 out1 <= in2 when '1',

11 '0' when others;

12 end when_ex_arch;
CENG3430 Lec01: Introduction to VHDL 2021-22 T2 57

 when in1='1' then out1 <= in2

when in1 = other cases

then out1 <= ‘0’

Signal based

in1

in2
out1

Class Exercise 1.9

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 58

Student ID:

Name:

Date:

• Fill in lines 10~11 using with-select-when:

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity when_ex is

4 port (in1, in2 : in std_logic;

5 out1 : out std_logic);

6 end when_ex;

7 architecture when_ex_arch of when_ex is

8 begin

9 with in1 select

10 __

11 __

12 end when_ex_arch;

in1

in2
out1

when-else vs. with-select-when

• Concurrent 1) when-else: Condition based

out1 <= '1' when in1 = '1' and in2 = '1' else '0';

• Concurrent 2) with-select-when: Signal based

with in1 select

out1 <= in2 when '1',

'0' when others;

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 60

in1

in2
out1

 when in1='1' then out1 <= in2

when in1 = other cases

then out1 <= ‘0’

when in1=‘1’ and in2=‘1’ then out1 <= ‘1’, otherwise out <= ‘0’

Design Constructions

• Concurrent: Statements that can be stand-alone

1) when-else

2) with-select-when

• Sequential: Statements inside the process

1) if-then-else

2) case-when

3) for-in-to-loop

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 61

Sequential – INSIDE process

Concurrent: OUTSIDE process

Sequential 1) if-then-else

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 62

entity if_ex is

port(in1,in2: in std_logic;

out1: out std_logic);

end if_ex;

architecture if_ex_arch of if_ex is

begin

process(b)

begin

if in1 = '1' and in2 = '1' then

out1 <= '1';

else

out1 <= '0';

end if;

end process;

end if_ex_arch;

if (cond) then

statement;

end if;

if (cond) then

statement1;

else

statement2;

end if;

if (cond1) then

statement1;

elsif (cond2) then

statement2;

elsif …

…

else

statementn;

end if;

in1

in2
out1

Sequential 2) case-when

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 63

All cases must be present:
Use others to complete all cases

“=>” means “implies” not “bigger”

"00"|"11" means case “00” or “11”

entity test_case is

port (in1, in2: in std_logic;

out1,out2: out std_logic);

end test_case;

architecture case_arch of test_case is

signal b : std_logic_vector (1 downto 0);

begin

process (b)

begin

case b is

when "00"|"11" => out1 <= '0';

out2 <= '1';

when others => out1 <= '1';

out2 <= '0';

end case;

end process;

b <= in1 & in2;

end case_arch;

Class Exercise 1.10

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 64

Student ID:

Name:

Date:

• List line numbers of

concurrent

statements:

Answer:

• Fill in the truth table:

1 entity test_case is

2 port (in1, in2: in std_logic;

3 out1,out2: out std_logic);

4 end test_case;

5 architecture case_arch of test_case is

6 signal b : std_logic_vector (1 downto 0);

7 begin

8 process (b)

9 begin

10 case b is

11 when "00"|"11" => out1 <= '0';

12 out2 <= '1';

13 when others => out1 <= '1';

14 out2 <= '0';

15 end case;

16 end process;

17 b <= in1 & in2;

18 end case_arch;

b(1) b(0) out1 out2

0 0

0 1

1 0

1 1

Concurrent

when-else

b <= "1000" when a = "00" else

"0100" when a = "01" else

"0010" when a = "10" else

"0001" when a = "11";

with-select-when

with a select

b <= "1000" when "00",

"0100" when "01",

"0010" when "10",

"0001" when "11";

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 66

Concurrent vs. Sequential Constructions

Sequential

if-then-else

if a = "00" then b <= "1000"

elsif a = "01" then b <= "1000"

elsif a = "10" then b <= "1000"

else b <= "1000"

end if;

case-when

case a is

when "00" => b <= "1000";

when "01" => b <= "0100";

when "10" => b <= "0010";

when others => b <= "0001";

end case;

for-loop

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 67

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity for_ex is

port (in1: in std_logic_vector(3 downto 0);

out1: out std_logic_vector(3 downto 0));

end for_ex;

architecture for_ex_arch of for_ex is

begin

process (in1)

begin

for i in 0 to 3 loop

out1(i) <= not in1(i);

end loop;

end process;

end for_ex_arch;

in1(3:0) out1(3:0)

while-loopprocess (in1)

variable i: integer := 0;

begin

i := 0;

while i < 4 loop

out1(i) <= not in1(i);

i := i + 1;

end loop;

end process;

Sequential 3) loop (1/2)

Sequential 3) loop (2/2)

• for-loop

for i in 0 to 3 loop

out1(i) <= not in1(i);

end loop;

– No need to declare the
loop index (e.g., i).

• It is implicitly declared within

the loop.

• It may not be modified within

the loop (e.g., i := i-1;).

– for-loop is generally

supported for synthesis.

• while-loop

variable i: integer:=0;

…

while i < 4 loop

out1(i) <= not in1(i);

…

end loop;

– The while loop repeats if

the condition tested is true.

• The condition is tested

before each iteration.

– while-loop is supported

by some logic synthesis

tools with restrictions.

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 68

https://www.ics.uci.edu/~jmoorkan/vhdlref/for_loop.html

https://www.ics.uci.edu/~jmoorkan/vhdlref/while.html

Variable Object

variable VAR_NAME: <type> [:= <value>];

Note: Variables can be declared without initialized values.

• Examples:

– variable VAR_NAME: STD_LOGIC;

• Declared without initialized value

– variable VAR_NAME : STD_LOGIC := '1’;

• Variables can only be declared/used in the process.

• Variables are used only by programmers for internal

representation (less direct relationship to hardware).

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 69

Signal vs. Variable Assignment

• Both signals and variables can be declared without

initialized values.

– signal SIG_NAME: <type> [:= <value>];

– variable VAR_NAME: <type> [:= <value>];

• Their values can be assigned after declaration.

– Syntax of signal assignment:

SIG_NAME <= <expression>;

– Syntax of variable assignment:

VAR_NAME := <expression>;

CENG3430 Lec01: Introduction to VHDL (1/2) 2021-22 T2 70

Class Exercise 1.11

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 71

Student ID:

Name:

Date:

architecture arch1 of ex1

is

begin

process (in1)

begin

for i in 0 to 3 loop

out1(i) <= not in1(i);

end loop;

end process;

end for_ex_arch;

• Rewrite arch1 without using a process()

architecture arch1 of ex1

is

begin

end for_ex_arch;

Summary

• Basic Structure of a VHDL Module

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 73

1) Library Declaration

2) Entity Declaration

– External Signal (I/O Pins)

3) Architecture Body

– Internal Signal

– Architectural Design Methods

 Data Flow Design (concurrent statements)

 Structural Design (“port map”)

 Behavioral Design (sequential statements)

– Concurrent vs. Sequential Statements

– Design Constructions

Review: Basic Gates in Logic Circuits

CENG3430 Lec01: Introduction to VHDL 2021-22 T2http://www.nutsvolts.com/magazine/article/understanding_digital_buffer_gate_and_ic_circuits_part_1 74

Review: NAND and NOR Gates

• In many technologies, implementation of NAND gates

or NOR gates is easier than that of AND or OR gates.

– NAND Gate:

– NOR Gate:

• Any logic function can be realized using only NAND

gates or only NOR gates.
CENG3430 Lec01: Introduction to VHDL 2021-22 T2 75http://www.nutsvolts.com/magazine/article/understanding_digital_buffer_gate_and_ic_circuits_part_1

(analogy)

Review: Tristate Logic

• The concept of tristate logic is also essential in digital

system designs.

– Directly connecting outputs of two gates together might not

operate properly, and might cause damage to the circuit.

– One ways is to use tristate buffers.

• Tristate buffers are gates with a high impedance state

(High-Z or Z) in addition to high and low logic states.

– High impedance state is equivalent to an open circuit.

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 76

Review: Buffer Gate

• Double inversion would “cancel” each other out.

– A weak signal may be amplified by means of two inverters.

• For this purpose, a special logic gate called a buffer

gate is manufactured to perform the double inversion.

– Its symbol is simply a triangle, with no inverting “bubble” on

the output terminal:

CENG3430 Lec01: Introduction to VHDL 2021-22 T2 77https://www.allaboutcircuits.com/textbook/digital/chpt-3/buffer-gate/

